Selasa, 19 Oktober 2010

Gymnosperms

Common names

Gymnosperms (Latin gymn-", naked"; Greek sperma, "seed").

Taxonomic notes

This database provides information on taxa belonging to the gymnosperms. The gymnosperms have long been recognized as a distinctive group of plants, but there has also been a long (and ongoing) debate about whether the principal groups within the gymnosperms share a common ancestor, and if so, whether that common ancestor is or is not shared with the flowering plants, also called angiosperms. If they do share a common ancestor, distinct from the flowering plants, then the gymnosperms are a unique lineage of plants. Otherwise, the term "gymnosperm" has no taxonomic significance. In any event, the term "gymnosperm" has practical significance because it refers to a relatively small and highly distinctive assemblage of plants that are for the most part very ancient in lineage and reduced to a largely relictual distribution, but which nonetheless have great cultural and ecological importance at a global scale--a significance far greater than their species diversity alone would imply.
The principal point of contention in the taxonomic debate is whether the gnetophytes Ephedra, Gnetum and Welwitschia share a common ancestor with the angiosperms or the conifers (which are usually, but not always, assumed to share a common ancestor with the cycads and Ginkgo). The former opinion is called the "anthophyte" hypothesis, where anthophytes are defined to be a clade including both angiosperms and gnetophytes. The latter opinion is the gnetifer (or the variant 'gnepine') hypothesis, where gnetifers are a clade including both gnetophytes and the conifers. A succinct, recent online review of the subject is provided by Castillo (2001), and cladograms clarifying the anthophyte and gnetifer hypotheses are provided by Burleigh and Mathews (2004). Every year or so a new paper is published supporting one hypothesis or another; currently the genetic data largely support the gnetifer hypothesis (e.g., Burleigh and Mathews 2004), and the morphology data support the anthophyte hypothesis (e.g., Friis et al. 2007). However, there are very few taxonomists out there who would be so rash as to assert that an end is in sight. It appears likely that Darwin's "abominable mystery", the origin of the angiosperms, will remain a mystery for a few more years. Until it is resolved, we won't quite know what to make of the gnetales.
The gymnosperms have been subdivided along a variety of different lines and the recent flood of information on fundamental taxonomic characters (such as chloroplast DNA) has led to further revisions. One recent treatment (Reveal 1998) subdivides them into 4 divisions, 6 classes, 12 orders and 14 families, as shown in the chart at left (note that the term "Pinophyta" in the chart should be replaced with the term "Gymnosperms" because I have since adopted the convention that the Pinophyta s.s. refers only to the conifers, subdivision Pinophytina). The formal names for each taxon shown in the chart are presented HERE.
The principal point of contention between various schemes for dividing gymnosperms above the Family rank seems to be, at what point in the hierarchy should distinctions be made. This database draws no real distinctions above the level of Order, assigning the gymnosperms to four Orders: Ginkgoales, Cycadales, Coniferales and Gnetales. Each of these is assigned to one class (Ginkgoopsida, Cycadopsida, Coniferopsida and Gnetopsida) and one division (Ginkgophyta, Cycadophyta, Pinophyta, and Gnetophyta). I am hopeful that the current hubbub of genetic analysis will eventually produce a reasonably conclusive analysis of the entire gymnosperm group.
Regardless of the rank of the several taxa, the following table describes the relative hierarchy of gymnosperm taxonomy. Most of these distinctions have remained fairly stable for over a century, with debate mostly about whether certain small genera should really be families.

 Ginkgo (one species)
 Cycads Cycas group (one genus in one family)
 Zamia group (one or two families)
 Conifers Pine-like conifers Pine group (one family)
 Sciadopitys (one species in one family)
 Podocarps (one or two families)
 Araucarias (one family)
 Cephalotaxus (one genus in one family)
 Cypress group (one or two families)
 Yew-like conifers (one family)
 Gnetophytes Gnetum (one genus in one family)
 Ephedra (one genus in one family)
 Welwitschia (one species in one family)  

Although morphologically, ecologically and taxonomically diverse, and individually very numerous, the gymnosperms are not represented by a great many species. A table and charts summarizing diversity at the family, genus and species level are presented here. In this treatment there are 947 species (as of 2002.07.07), or about as many as may be found in the largest genera of flowering plants (such as Acacia). Of this total, one species represents the Ginkgos, 68 represent the Gnetophytes, 289 are Cycads, and the remaining 589 species are Conifers. At this time, those taxon figures are debatable within ±5-10%. There are not likely to be many more species discovered. There have lately been notable discoveries (Xanthocyparis vietnamensis, discovered in 2001 in Vietnam), and the affinity of certain cycads, some podocarps and many gnetophytes for tropical rainforest environments means that new discoveries may be made in those taxa as well.
As a practical matter, this database generally treats species as valid if there is decent ground for debate as to whether a species is distinct, or should be treated as a subspecies or variety. Such debates are common because, for many taxa, up-to-date taxonomic treatments are simply not available. Where I can find such a treatment, then I tend to give it considerable credence; but there are some taxa that have not received monographic treatment for many decades.
I am also sometimes questioned about the distinction between subspecies and varieties. Generally I prefer to discriminate subspecies if they represent spatially and ecologically disjunct groups that show minimal evidence of recent introgression or other genetic exchange. I prefer to use the term variety to represent morphologically distinctgroups that may be local in extent, share a common range or ecological setting, or display evidence of active gene flow between the taxa. Of course there are many intermediate conditions and there is still an element of subjectivity. Nonetheless I feel it is better to have scientific criteria in designation of varieties and subspecies; in the past, the two seem to have been discriminated mainly on the basis of personal preferences.

Description

Plants are classified into two large groups, vascular plants and nonvascular plants. Nonvascular plants lack tissues that have been specialized for the transport of water and nutrients between distant parts of the plant. They include all algae, mosses, and their allies. Vascular plants have such transport systems. They include the vast majority of familiar terrestrial plants and can be divided into three major groups according to major features of their reproductive systems. The simplest and oldest of these is the Pterophytina or ferns and fern allies. The next group is the Pinophyta or Gymnospermae, which are the focus of this presentation. The last and by far the largest group (about 250,000 described species), is the Angiospermae.
Gymnosperms are woody plants, either shrubs, trees, or, rarely, vines (some gnetophytes). They differ from flowering plants in that the seeds are not enclosed in an ovary but are exposed within any of a variety of structures, the most familiar being cones. A more anatomically detailed discussion of the comparative morphology of gymnosperms and related vascular plants can be found in the On-Line Biology Book or by clicking on Google Search (Gymnosperm Life Cycle). It seems odd, but apart from that naked seed, the gymnosperms really do not share many attributes. Wood and leaf, habit and habitat, physiology and anatomy - all are quite variable between the four major groups. We might have chosen to put "the gymnosperms" together in one group because they are all relicts, survivors of an ancient flora. They all seem strange to children of the Cenozoic savannas.

Range

Living gymnosperms are distributed worldwide (excepting Antarctica), with a majority, particularly the conifers, in temperate and subarctic regions.

Big tree

Gymnosperms include many of the largest trees on earth. Ginkgo can grow very large. Among the conifers, Sequoiadendron giganteum is the largest of all trees, but many other giants exist as well; see the sidebar for A Tale of Big Tree Hunting In California.

Oldest

The age of a gymnosperm is usually difficult to determine. Precise numbers are only available if someone recorded the date of planting. Many trees have (approximately) annual rings, permitting approximate determination of the age of an individual, but in harsh environments many years may pass before the first ring is made. For example, Ken Lertzman (pers. comm. 1990) found mountain hemlock seedlings up to 18 years old (based on bud scar counts) that had yet to form their first ring. The greatest age known from ring counts is about 5000 years, for Pinus longaeva. Several other species, such as Thuja plicata and Taxus baccata, might achieve comparable ages but we cannot tell because they live in moist climates where the tree's woody heart rots away while the rest of the tree is in the prime of life, so that no record of the rings is left behind. For further detail on the oldest known gymnosperms, see the article How Old Is That Tree?.
Many other trees, including most tropical species, and all non-tree gymnosperms (Cycadales and Gnetales), do not have regular annual rings. Age estimates for such plants are usually based on extrapolation of observed growth rates. Such extrapolation may lead to estimation errors of several hundred percent (usually overestimation, because trees grow more slowly as they age).
Many species of plants are clonal, so that numerous different individuals are genetically identical. Among the oldest, a clone age of 43,600 years has been estimated for Lomatia tasmanica, a Tasmanian tree (DEWHA 2010). A clone age estimate of 10,500 years has been proposed for Huon pine, Lagarostrobos franklinii, and a comparable age may be reached in the redwood, Sequoia sempervirens, which is only one of many gymnosperms that can sprout from fallen stems or cut stumps. Some cycads produce clones by producing buds at the base, which may become separated from the main plant and then root. The oldest gymnosperm clones are likely to be found among species prone to vegetative reproduction in an area of extraordinarily stable climate, such as cycads of the genus Encephalartos growing in South Africa.

Dendrochronology

Dendrochronology, the study of tree rings, is necessarily restricted to trees that form annual rings. This includes hundreds of species. Nearly all gymnosperms living in temperate or boreal climates have been investigated for use in dendrochronology, and most have proven suitable, with the exceptions found mainly in areas where extreme stress from cold, drought or other factors frequently prevents the formation of an annual ring. Tropical gymnosperms have been less widely studied, but generally, those growing in climates with pronounced wet and dry seasons form annual rings and those with year-round rainfall are not usable.

Ethnobotany

There are few gymnosperms that were not used by aboriginal peoples; the main exceptions seem to have been in areas where there were few or no people, or in tropical areas where angiosperm diversity far exceeded gymnosperm diversity. Two outstanding examples include:
  • Cycads (Cycadales), Bunya pines (Araucaria bidwillii) and stone pines (Pinus subsection Cembroides), all of which produced edible nuts that were a staple food for local cultures.
  • Western redcedar (Thuja plicata), which filled virtually all needs of Pacific Northwest Coast peoples except providing food.
Today, of course, gymnosperms provide the world with softwood lumber and with most of the wood pulp supply. Most of this timber comes from a handful of species, notably Pinus radiata, the most widely planted tree in the world, although it has one of the smallest natural distributions.

Observations

Gymnosperm diversity is best observed at botanical gardens and arboreta. Conifers, at least, are also very well represented in ornamental collections throughout the temperate zones of the world.

Remarks

Citations

Burleigh, J.G. and S. Mathews. 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. American Journal of Botany 91: 1599-1613. Available online HERE (2007.11.26).
Castillo, G.R.H. 2001. Seed plant phylogeny and the anthophyte hypothesis. http://www.biology.ualberta.ca/courses.hp/biol606/OldLecs/Lecture2001.03.HC.html, accessed 2007.11.26.
[DEWHA] Department of the Environment, Water, Heritage and the Arts (2010). Lomatia tasmanica in Species Profile and Threats Database, Department of the Environment, Water, Heritage and the Arts, Canberra. www.environment.gov.au/sprat, accessed 2010.03.29.
Friis, E.M., P.R. Crane, K.R. Pedersen, S. Bengtson, P.C.J. Donoghue, G.W. Grimm, and M. Stampanoni. 2007. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450: 549-553.

See also

Chaw, S.M., C.L. Parkinson, Y. Cheng, T.M. Vincent, and J.D. Palmer. 2000. Seed plant phylogeny inferred frrom all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086-4091. Available online HERE (2007.11.26).
The University of Sydney School of Biological Sciences provides a good overview of the gymnosperm life cycle (2006.03.20).
White 1994 gives a beautifully illustrated account of the fossil origins of the major gymnosperm and angiosperm groups.

Sumber : The Gymnosperm Database

Selasa, 12 Oktober 2010

Pamor Buah Merah Terbentur Penelitian

Agak berseberangan dengan anggapan masyarakat tentang khasiat buah merah untuk  menyembuhkan penyakit, paparan hasil penelitian justru belum memberikan bukti yang menggembirakan.
 
Sejak dua tahun lalu, Desiree Zuraida, 51 tahun, mulai getol mengonsumsi buah merah. Khabar mengenai khasiat buah asal Irian Jaya itu ia peroleh dari pemberitaan di berbagai media. Desiree tergerak untuk mendapatkan minyak buah merah meski harganya mahal. “Sekitar 1,2 juta setiap liternya,” ujar staf pengajar di Fakultas Hukum UI ini.  Tapi, benarkah buah merah berkhasiat? Desiree mengatakan, “Ketika timbul gejala flu, saya minum buah merah, nggak jadi sakit.”
 
Boleh jadi, ada banyak hal mengenai buah merah ini selain yang dilontarkan Desiree. Dan, maraknya pemberitaan mengenai khasiat buah merah menyedot perhatian banyak kalangan, termasuk kalangan akademisi.   Salah satunya, adalah Departemen Biokimia dan Biologi Molekuler FKUI yang melakukan serangkaian penelitian mengenai buah merah. Hasilnya, pada Kamis, (29/3) lalu telah dipaparkan di Aula FKUI  dalam Seminar Hasil Penelitian Buah Merah.
 
Efek Antioksidan
 
Buah merah diduga memiliki khasiat karena mengandung beberapa antioksidan, terutama beta karoten dan alfa tokoferol. Untuk membuktikan dugaan tersebut, salah satu hasil penelitian yang dipaparkan adalah riset mengenai aktivitas antioksidan total buah merah dibandingkan dengan bahan pangan alam lain, yaitu jahe, tomat dan bawang putih. Penelitian yang dilakukan oleh DR. rer.physiol Dr. Septelia Inawati Wanandi, dkk ini menggunakan minyak buah merah merek tertentu yang dijual di pasar. Pada penelitian ini, juga diteliti kandungan fenol untuk tumbuhan tersebut, karena kontribusi senyawa fenol terhadap aktivitas antioksidan lebih besar dibandingkan dengan vitamin C, E, dan karotenoid.
 
Tapi, hasilnya sedikit berlawanan dengan yang banyak dikhabarkan orang. Minyak buah merah memiliki kandungan fenol total maupun aktivitas antioksidan total yang hampir tidak terdeteksi, berbeda dengan jahe, tomat, dan bawang putih.
 
Penelitian buah merah pun berlanjut untuk membuktikan efek antioksidan minyak buah merah secara in vitro yang dilakukan oleh Dr. Sri Widia A. Jusman, MS, dkk.  Penelitian dilakukan pada sel darah merah domba yang diberi stress oksidatif. Sebagai parameter stress oksidatif diukur kandungan malondialdehid (MDA), kandungan senyawa karbonil, pembentukan metHb, dan aktivitas enzim kalase. Kesimpulan  dari hasil penelitian juga belum menggembirakan : minyak buah merah tidak melindungi sel darah merah domba yang diberi stress oksidatif.
 
Efek pada Kanker
Buah merah disinyalir juga dapat mengobati penyakit kanker.  Untuk mengetahui khasiat buah merah terhadap kanker, Dr. Parwati Abadi Soekarno, Sp.Biok dkk meneliti efek minyak buah merah pada karsinogenesis hati tikus yang diinduksi dengan 2-asetilaminofluoren (AAF). Kesimpulan yang dilaporkan, efek antioksidan minyak buah merah belum cukup menghambat stress oksidatif dan karsinogenesis hati oleh AAF. Kesimpulan lain adalah pemberian minyak buah merah tidak menginduksi karsinogenesis, tetapi dapat menginisiasi kerusakan sel hati yang mungkin dimediasi oleh stress oksidatif.
 
Dengan tingginya prevalensi penderita kanker payudara di Indonesia, buah merah juga diteliti untuk mengetahui apakah berkhasiat untuk pengobatan penyakit ini. Maka, diteliti apakah minyak buah merah dapat menghambat pertumbuhan sel tumor pada kelenjar susu mencit C3H. Sayangnya, penelitian yang dilakukan Hening Pujasari, dkk bersama koleganya lagi-lagi memberikan hasil yang bertolak belakang dengan anggapan masyarakat bahwa buah merah dapat digunakan dalam pengobatan kanker. “Pemberian minyak buah merah dapat menghambat laju proliferasi sel tumor kelenjar susu mencit C3H, namun aktivitas apoptosis dan pertumbuhan tumor belum dapat dihambat,” ujar Dra. Puspita Eka Wuyung, MS dalam presentasinya.
 
Masih dengan menggunakan binatang yang sama, yaitu tikus, maka dilakukan penelitian untuk menguji khasiat buah merah sebagai antiradang. Kali ini penelitian yang dilakukan oleh Dr. Ninik Mudjihartini, dkk menggunakan tikus Sprague jantan yang diberikan minyak buah merah. Hasil penelitian menunjukkan dosis minyak buah merah 0,231 mL/200 gram berat badan belum mampu menghambat proses radang pada edema kaki dibandingkan dengan pemberian natrium diklofenak. Namun, hasil yang mengembirakan mengenai efek buah merah adalah ketika dilakukan pengukuran jumlah leukosit.  Minyak buah merah mampu menekan peningkatan jumlah leukosit sebanding dengan obat yang biasa digunakan sebagai antiradang.
 
Sessi selanjutnya dari buah merah mencoba mengetahui kemampuan minyak buah merah melindungi hati tikus.  Pada percobaan ini, tikus yang digunakan adalah tikus galur Sprague-Dowley yang diracun dengan tetraklorida. “Sifat toksik CCl4 diketahui dapat mengakibatkan kerusakan jaringan hati,” kata Indriati yang memaparkan hasil penelitiannya bersama koleganya. Untuk mengetahui kerusakan hati, dilakukan pengukuran aktivitas GPT (glutamate piruvat transamine) plasma. Sedangkan pengaruh radikal bebas metabolit CCl4 pada lipid hati dinilai dengan mengukur kandungan MDA hati. Dan hasilnya pengamatan terhadap aktivitas GPT plasma dan kandungan MDA jaringan hati, minyak buah merah ternyata dapat memberi perlindungan pada hati.
 
Efek terhadap Imunitas
Sejumlah orang di masyarakat mengonsumsi buah merah untuk meningkatkan daya tahan tubuh. Siti Rachmawati Achyat, SSi, dkk memaparkan penelitian tentang efek buah merah terhadap imunitas humoral. Biatang percobaan yang digunakan untuk melihat pengaruh pemberian sari buah merah adalah tikus jantan galur wistar yang diberi imunitas sel darah merah domba. Titer antibody anti-sel darah merah domba diuji secara statistik dengan metode ANOVA satu arah dan uji nyata beda terkecil. “Sari buah merah tidak mempengaruhi imunitas humoral tikus respon antigen sel darah merah domba,” ujar Siti dalam kesimpulannya.
 
Buah Merah Sebabkan Stres Oksidatif
Penelitian selanjutnya kembali tidak membuktikan gembor-gembor di masyarakat bahwa buah merah memiliki keunggulan ditinjau dari khasiatnya. Buah merah justru dapat bersifat toksik terhadap hati. Dr. Tena Djuartina, M.Biomed, dkk coba mengungkap pemberian minyak buah merah pada hati tikus yang cedera akibat pemberian D-Galaktosamin. Pada penelitian yang dilakukan, tikus dibagi menjadi empat kelompok, yaitu yang diberi air, diberi minyak buah merah, diberi D-galaktosamin, diberi minyak buah merah lalu D-galaktosamin 1 minggu kemudian, diberi minyak buah merah dan D-Galaktosamin secara bersamaan. Dosis minyak buah merah yang digunakan adalah 1mL/kgBB/hari per oral, sedangkan dosis D-galaktosamin 200 mg/KgBB/minggu secara intraperitoneal.
 
Hasil pengukuran MDA plasma menunjukkan bahwa D-galaktosamin dapat meningkatkan MDA plasma setiap minggu. Hal ini menunjukkan bahwa D-galaktosamin mengakibatkan kerusakan oksidatif molekul lipid. Di lain sisi,  hasil MDA jaringan hati menunjukkan bahwa minyak buah merah juga bersifat toksik terhadap hati, sehingga menyebabkan peroksidasi lipid. Terbukti pada kelompok tikus yang diberi D-galaktosamin dan buah merah, hasil MDA plasma lebih tinggi dibandingkan kelompok yang diberi D-galaktosamin. Hal ini berarti, kerusakan yang diakibatkan menjadi lebih tinggi jika diberikan tambahan minyak buah merah dibandingkan jika hanya diberi D-galaktosamin.
 
Dari penelitian dengan mengukur berat hati,  D-Galaktosamin meningkatkan berat hati secara bermakna, karena D-galaktosamin mempunyai efek merusak hati. Pemberian minyak buah merah juga ternyata meningkatkan berat hati. “Disimpulkan minyak buah merah tidak dapat memberikan perlindungan terhadap sel hati,” ujar Tena.
 
 
Dr. Mohammad Sadikin, DSc dalam rangkumannya mengatakan, “Penelitian lebih lanjut perlu dilakukan untuk melihat efek ekstrak buah merah dengan target penelitian yang lebih rinci.” Dr. Parwati Abadi Soekarno, Sp.Biok di sesi terakhir juga mengatakan bahwa pemakaian jangka panjang untuk buah merah sebaiknya berhati-hati.

Selasa, 05 Oktober 2010

Kel'Thuzad, the Lich

Background story
      Forcibly raised from the dead by the Lich King to serve as his elite magical guard, the Lich has the burning cold of Northrend in his realm of control. Evoking numerous freezing blasts, his talent in life still remains in death. Delving into the essence of cold magic, he has the power to cause ice to condense into an orb that bounces from foe to foe, causing tremendous pain in its wake. Sacrificing his allies for magical power, the Lich is a murderer without a trace of warmth.